

POWER FLOW ANALYSIS

- When analyzing power systems, we know neither the complex bus voltages nor the complex current injections
- Rather, we know the complex power being consumed by the load, and the power being injected by the generators plus their voltage magnitudes
- Therefore, we can not directly use the Y_{bus} equations, but rather must use the power balance equations

POWER BALANCE EQUATIONS

4

From KCL we know at each bus k in an N bus system the <u>current injection</u>, I_k , must be equal to the current that flows into the network

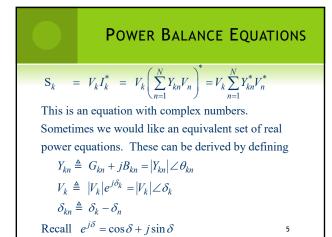
$$I_k = I_{Gk} - I_{Dk} = \sum_{n=1}^{N} I_{kn}$$

Since $I = Y_{bus}V$ we also know

$$I_k = I_{Gk} - I_{Dk} = \sum_{n=1}^{N} Y_{kn} V_n$$

The network power injection is then $S_k = V_k I_k^*$

4



$$\begin{array}{l} \textbf{Real Power Balance}\\ \textbf{Equations} \end{array} \\ S_{k} = P_{k} + jQ_{k} = V_{k}\sum_{n=1}^{N}Y_{kn}^{*}V_{n}^{*} = \sum_{n=1}^{N}|V_{k}||V_{n}||Y_{kn}|e^{j(\delta_{kn}-\theta_{kn})} \\ = \sum_{n=1}^{N}|V_{k}||V_{n}||Y_{kn}| \angle \delta_{kn} - \theta_{kn} \\ \textbf{Resolving into the real and imaginary parts} \\ P_{k} = \sum_{n=1}^{N}|V_{k}||V_{n}||Y_{kn}|\cos(\delta_{kn}-\theta_{kn}) = P_{Gk} - P_{Dk} \\ Q_{k} = \sum_{k=1}^{N}|V_{k}||V_{n}||Y_{kn}|\sin(\delta_{kn}-\theta_{kn}) = Q_{Gk} - Q_{Dk} \end{array}$$

Power Flow Requires Iterative Solution

In the power flow we assume we know S_k and the Y_{bus} . We would like to solve for the *V*'s. The problem is the below equation has no closed-form solution:

$$S_k = V_k I_k^* = V_k \left(\sum_{n=1}^N Y_{kn} V_{kn}\right)^* = V_k \sum_{n=1}^N Y_{kn}^* V_n^*$$

Rather, we must pursue an iterative approach.

8

GAUSS ITERATION

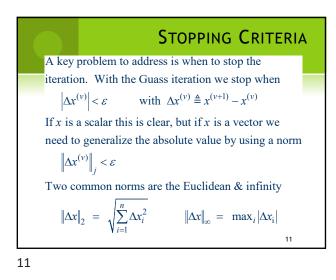
8

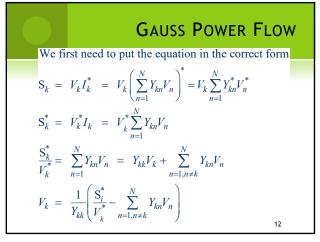
There are a number of different iterative methods we can use. We'll consider two: Gauss and Newton.

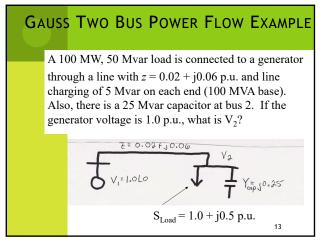
With the Gauss method we need to rewrite our equation in an implicit form: x = h(x)

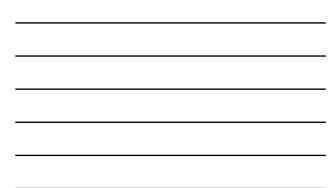
To iterate we first make an initial guess of x, $x^{(0)}$, and then iteratively solve $x^{(\nu+1)} = h(x^{(\nu)})$ until we find a "fixed point", \hat{x} , such that $\hat{x} = h(\hat{x})$.

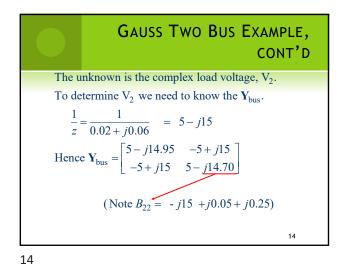
	GAUSS ITERATION EXAMPLE								
Exampl	le: Solve $x - \sqrt{x}$	-1 = 0							
x ^{(v+}	1) = $1 + \sqrt{x^{(v)}}$								
Let $v =$	0 and arbitrarily	guess $x^{(0)} =$	1 and solve						
v	$x^{(\nu)}$	v	$x^{(\nu)}$						
0	1	5	2.61185						
1	2	6	2.61612						
2	2.41421	7	2.61744						
3	2.55538	8	2.61785						
4	2.59805	9	2.61798						
				10					

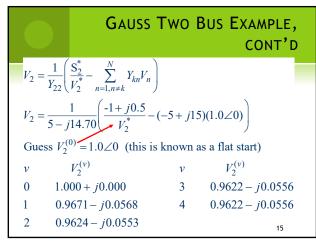












GAUSS TWO BUS EXAMPLE, CONT'D

16

 $V_2 = 0.9622 - j0.0556 = 0.9638 \angle -3.3^\circ$

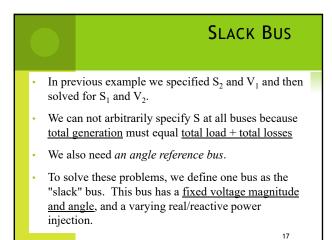
Once the voltages are known all other values can be determined, such as the generator powers and the line flows

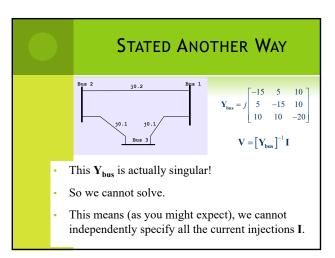
 $S_1^* = V_1^* (Y_{11}V_1 + Y_{12}V_2) = 1.023 - j0.239$

In actual units $P_1 = 102.3$ MW, $Q_1 = 23.9$ Mvar

The capacitor is supplying $|V_2|^2 25 = 23.2$ Mvar

16





GAUSS WITH MANY BUS SYSTEMS

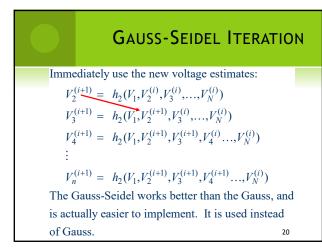
With multiple bus systems we could calculate

new V_k 's as follows:

$$V_{k}^{(i+1)} = \frac{1}{Y_{kk}} \left(\frac{\mathbf{S}_{k}^{*}}{V_{k}^{(i)*}} - \sum_{n=1,n\neq i}^{N} Y_{kn} V_{n}^{(i)} \right)$$
$$= h_{i}(V_{1}^{(i)}, V_{2}^{(i)}, ..., V_{n}^{(i)})$$

But after we've determined $V_k^{(i+1)}$ we have a better estimate of its voltage, so it makes sense to use this new value. This approach is known as the Gauss-Seidel iteration.

19



20

THREE TYPES OF POWER FLOW BUSES

• There are three main types of power flow buses

- Load (PQ) at which P/Q are fixed; iteration solves for voltage magnitude and angle.
- Slack at which the voltage magnitude and angle are fixed; iteration solves for P/Q injections
- Generator (PV) at which P and |V| are fixed; iteration solves for voltage angle and Q injection
 - Special coding is needed to include PV buses in the Gauss-Seidel iteration

ACCELERATED G-S CONVERGEN

Previously in the Gauss-Seidel method we were

calculating each value x as

 $x^{(i+1)} = h(x^{(i)})$

To accelerate convergence we can rewrite this as

$$x^{(i+1)} = x^{(i)} + h(x^{(i)}) - x^{(i)}$$

Now introduce acceleration parameter α

$$x^{(i+1)} = x^{(i)} + \alpha(h(x^{(i)}) - x^{(i)})$$

With $\alpha = 1$ this is identical to standard Gauss-Seidel. Larger values of α may result in faster convergence.

22

22

	Accelerated Convergence, cont'd									
	Consider the previous example: $x - \sqrt{x} - 1 = 0$									
	$x^{(\nu+1)} = x^{(\nu)} + \alpha(1 + \sqrt{x^{(\nu)}} - x^{(\nu)})$									
Comparison of results with different values of α										
	k	$\alpha = 1$	$\alpha = 1.2$	$\alpha = 1.5$ α	x = 2					
	0	1	1	1	1					
	1	2	2.20	2.5	3					
	2	2.4142	2.5399	2.6217	2.464					
	3	2.5554	2.6045	2.6179	2.675					
	4	2.5981	2.6157	2.6180	2.596					
	5	2.6118	2.6176	2.6180	2.626 23					

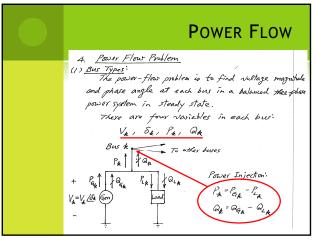
23

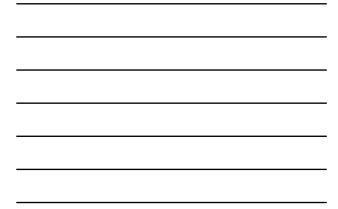
GAUSS-SEIDEL ADVANTAGES/DISADVANTAGE

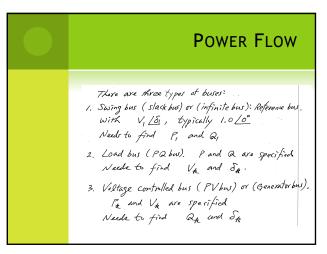
Advantages

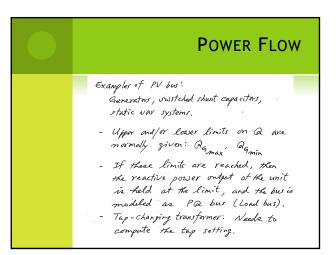
- Each iteration is relatively fast (computational order is proportional to number of branches + number of buses in the system
- Relatively easy to program
- Disadvantages
 - Tends to converge relatively slowly, although this can be improved with acceleration
 - Has tendency to miss solutions, particularly on large systems

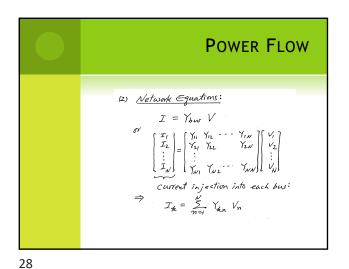
- Tends to diverge on cases with negative branch reactances (common with compensated lines)
- Need to program using complex numbers



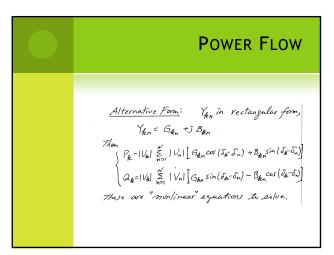


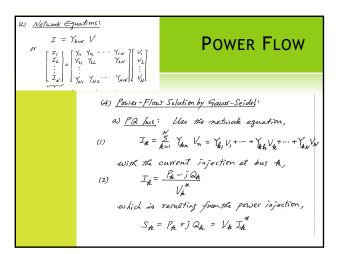


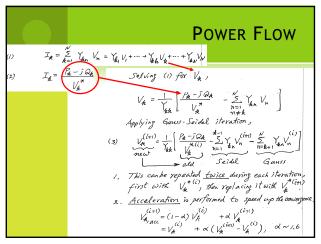


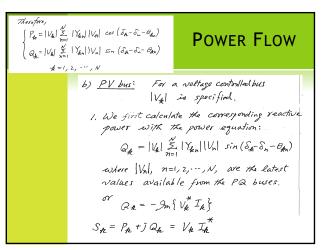


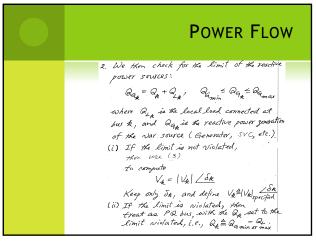
(3) <u>Power Equation</u>: Power injection at each bus is then, $S_{dk} = P_{dk} + j Q_{dk} = V_{dk} I_{dk}^* \quad I_{dk} = \frac{S}{2m+1} Y_{dkn} V_{n}$ $= V_{d} \left[\sum_{h=1}^{M} Y_{hh} V_{h} \right]^*$, $= |V_{k}| \sum_{n=1}^{M} |Y_{hh}| |V_{n}| = e^{i(\tilde{Q}_{k} - \tilde{S}_{n} - \tilde{Q}_{kn})}$ where $V_{n} = |V_{n}| / \tilde{S}_{n}$, $Y_{kn} = |Y_{kn}| / \frac{\mathcal{Q}_{kn}}{\mathcal{Q}_{k}}$ Therefore, $\left\{ P_{dk} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{h}| = cor (S_{k} - S_{n} - Q_{kn}) \\ Q_{k} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{h}| = sin (S_{k} - \tilde{S}_{n} - Q_{kn}) \\ Q_{k} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{h}| = sin (S_{k} - \tilde{S}_{n} - Q_{kn}) \\ Therefore,$ $\left\{ P_{dk} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{h}| = sin (S_{k} - \tilde{S}_{n} - Q_{kn}) \\ Q_{k} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{n}| = sin (S_{k} - \tilde{S}_{n} - Q_{kn}) \\ Therefore,$ $\left\{ P_{dk} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{h}| = sin (S_{k} - \tilde{S}_{n} - Q_{kn}) \\ Q_{k} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{n}| = sin (S_{k} - \tilde{S}_{n} - Q_{kn}) \\ Therefore,$ $\left\{ P_{dk} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{n}| = sin (S_{k} - \tilde{S}_{n} - Q_{kn}) \\ Q_{k} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{n}| = sin (S_{k} - \tilde{S}_{n} - Q_{kn}) \\ Therefore,$ $\left\{ P_{dk} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{n}| = sin (S_{k} - S_{n} - Q_{kn}) \\ Q_{k} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| = Sin (S_{k} - S_{n} - Q_{kn}) \\ Therefore,$ $\left\{ P_{dk} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{n}| = sin (S_{k} - S_{n} - Q_{kn}) \\ Therefore,$ $\left\{ P_{dk} = |V_{k}| \sum_{n=1}^{M} |Y_{kn}| |V_{n}| = sin (S_{k} - S_{n} - Q_{kn}) \\ Therefore,$ $\left\{ P_{dk} = |V_{k}| \sum_{n=1}^{M} |Y_{k}| + S_{n} + S_{n}$

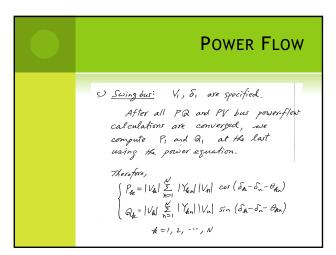


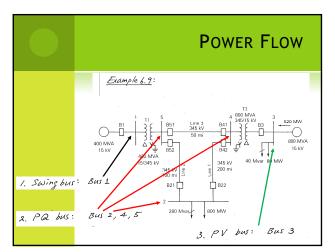












<u>Input Data:</u>	Power Flow							W		
						×			1.1	
TABLE 6.1 Bus input data for Example 6.9*	Bus	Туре	V per unit	δ degrees	P _G per unit	Q _G per unit	P _L per unit	QL per unit	Q _{Gmax} per unit	Q _{Gm} per unit
	1	Swing	1.0	0		_	0	0		
	2	Load		-	0	0	8.0	2.8		-
	3	Constant voltage	1.05	-	5.2		0.8	0.4	4.0	-2.8
,	4	Load		-	0	0	0	0		
	5	Load		_	0	0	0	0		
	* S _{base} =		R'	5 kV at bus		nd 345 k G' per un		B' per unit		laximum MVA xer unit
TABLE 6.2 Line input data for Example 6.9	Bus-to-	-Bus	per unit	. per e	nii u					
	Bus-to- 2-4	Bus .	0.0090	0.10		0		1.72		12.0
Line input data for					D D			1.72 0.88 0.44		12.0 12.0 12.0

