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ECL 4340

POWER SYSTEMS

LECTURE 12
POWER FLOWS, GAUSS-SEIDEL ITERATION

ANNOUNCEMENTS

 Be reading Chapter 6, also Chapter 2.4 
(Network Equations).

 HW 6 is posted. Due October 14, Friday, in 
Canvas.

POWER FLOW ANALYSIS

• When analyzing power systems, we know neither 
the complex bus voltages nor the complex current 
injections

• Rather, we know the complex power being 
consumed by the load, and the power being 
injected by the generators plus their voltage 
magnitudes

• Therefore, we can not directly use the Ybus

equations, but rather must use the power balance 
equations
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POWER BALANCE EQUATIONS
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From KCL we know at each bus  in an  bus system

the current injection, , must be equal to the current

that flows into the network 

Since  =  we also know
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POWER BALANCE EQUATIONS

*
* * *
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This is an equation with complex numbers. 

Sometimes we would like an equivalent set of real

power equations.  These can be derived by defining
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REAL POWER BALANCE

EQUATIONS

( )* *
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Resolving into the real and imaginary parts
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REAL POWER BALANCE

EQUATIONS

* *
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Resolving into the real and imaginary parts
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POWER FLOW REQUIRES ITERATIVE

SOLUTION

bus

*
* * *
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In the power flow we assume we know  and the

.  We would like to solve for the 's.  The problem

is the below equation has no closed-form solution:  
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her, we must pursue an iterative approach.  
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GAUSS ITERATION

There are a number of different iterative methods

we can use.  We'll consider two: Gauss and Newton.

With the Gauss method we need to rewrite our 

equation in an implicit form:    ( )

To iterate we fir
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st make an initial guess of ,  ,

and then iteratively solve ( ) until we

find a "fixed point", , such that ( ).ˆ ˆ ˆ
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GAUSS ITERATION EXAMPLE

( 1) ( )

(0)

( ) ( )

Example:   Solve  - 1 0

1

Let  = 0 and arbitrarily guess x 1 and solve

0 1 5 2.61185

1 2 6 2.61612

2 2.41421 7 2.61744

3 2.55538 8 2.61785

4 2.59805 9 2.61798
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STOPPING CRITERIA
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A key problem to address is when to stop the 

iteration.  With the Guass iteration we stop when 

with  

If  is a scalar this is clear, but if  is a vector we
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GAUSS POWER FLOW

*
* * *
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We first need to put the equation in the correct form
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GAUSS TWO BUS POWER FLOW EXAMPLE

A 100 MW, 50 Mvar load is connected to a generator 

through a line with z = 0.02 + j0.06 p.u. and line 
charging of 5 Mvar on each end (100 MVA base).  
Also, there is a 25 Mvar capacitor at bus 2.  If the 
generator voltage is 1.0 p.u., what is V2?  

SLoad = 1.0 + j0.5 p.u.
13

GAUSS TWO BUS EXAMPLE, 
CONT’D

2

2 bus

bus

22

The unknown is the complex load voltage, V .

To determine V  we need to know the .

1 1
5 15

0.02 0.06

5 14.95 5 15
Hence 

5 15 5 14.70
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GAUSS TWO BUS EXAMPLE, 
CONT’D

*
2

2 *
22 1,2

2 *
2

(0)
2

( ) ( )
2 2

1 S

1 -1 0.5
( 5 15)(1.0 0)

5 14.70

Guess 1.0 0  (this is known as a flat start)

0 1.000 0.000 3 0.9622 0.0556

1 0.9671 0.0568 4 0.9622 0.0556
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GAUSS TWO BUS EXAMPLE, 
CONT’D

2

* *
1 1 11 1 12 2

1

0.9622 0.0556 0.9638 3.3

Once the voltages are known all other values can 

be determined, such as the generator powers and the

line flows

S ( ) 1.023 0.239

In actual units P 102.3 MW

V j

V Y V Y V j
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, Q 23.9 Mvar

The capacitor is supplying V 25 23.2 Mvar
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SLACK BUS

• In previous example we specified S2 and V1 and then 
solved for S1 and V2.  

• We can not arbitrarily specify S at all buses because 
total generation must equal total load + total losses

• We also need an angle reference bus.

• To solve these problems, we define one bus as the 
"slack" bus.  This bus has a fixed voltage magnitude 
and angle, and a varying real/reactive power 
injection.  

17

STATED ANOTHER WAY

Bus 2 Bus 1

Bus 3

j0.2

j0.1 j0.1

15 5 10

5 15 10

10 10 20
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• This Ybus is actually singular! 

• So we cannot solve. 

• This means (as you might expect), we cannot 
independently specify all the current injections I.
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GAUSS WITH MANY BUS SYSTEMS
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With multiple bus systems we could calculate 

new V '  as follows:
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 its voltage, so it makes sense to use this

new value.  This approach is known as the

Gauss-Seidel iteration.  
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GAUSS-SEIDEL ITERATION
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Immediately use the new voltage estimates:
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The Gauss-Seidel works better than the Gauss, and

is actually easier to implement.  It is used instead

of Gauss. 20

THREE TYPES OF POWER

FLOW BUSES

• There are three main types of power flow buses

 Load (PQ) at which P/Q are fixed; iteration solves for voltage 
magnitude and angle.  

 Slack at which the voltage magnitude and angle are fixed; 
iteration solves for P/Q injections

 Generator (PV) at which P and |V| are fixed; iteration solves 
for voltage angle and Q injection

• Special coding is needed to include PV buses in the 
Gauss-Seidel iteration
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ACCELERATED G-S CONVERGENC

( 1) ( )

( 1) ( ) ( ) ( )

(

Previously in the Gauss-Seidel method we were

calculating each value  as

( )

To accelerate convergence we can rewrite this as

( )

Now introduce acceleration parameter 
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With  = 1 this is identical to standard Gauss-Seidel.

Larger values of  may result in faster convergence.
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ACCELERATED CONVERGENCE, CONT’D

( 1) ( ) ( ) ( )

Consider the previous example:    - 1 0

(1 )

Comparison of results with different values of 

1 1.2 1.5 2

0 1 1 1 1

1 2 2.20 2.5 3

2 2.4142 2.5399 2.6217 2.464

3 2.5554 2.6045 2.6179 2.675

4 2.59
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81 2.6157 2.6180 2.596

5 2.6118 2.6176 2.6180 2.626
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GAUSS-SEIDEL

ADVANTAGES/DISADVANTAGE

S• Advantages
• Each iteration is relatively fast (computational order is 

proportional to number of branches + number of buses in the 
system

• Relatively easy to program

• Disadvantages
• Tends to converge relatively slowly, although this can be 

improved with acceleration

• Has tendency to miss solutions, particularly on large systems

• Tends to diverge on cases with negative branch reactances
(common with compensated lines)

• Need to program using complex numbers
24
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POWER FLOW

POWER FLOW

POWER FLOW
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POWER FLOW
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POWER FLOW

28

29

30



10/11/2022

11

POWER FLOW
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POWER FLOW

POWER FLOW

POWER FLOW

34

35

36



10/11/2022

13

POWER FLOW

POWER FLOW
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POWER FLOW
*

*
1,

S1

i

n
i

i ik k
ii k k i

V Y V
Y V  

 
   

 


POWER FLOW

POWER FLOW

40

41

42


